
Kreisel-Bewegungen

Die Bewegungsgleichung der Rotation eines beliebigen starren Körpers ist die Euler-Gleichung.
Sie drückt diese Bewegung in dem körperfesten Koordinatensystem K aus (mit Drehmoment M,
Drehimpuls L und Rotationsgeschwindigkeit ω):

K M =
K L̇+

Kω×
K L (1)

Der Drehimpuls L kann mit dem Trägheitstensor J und dem Rotationsgeschwindigkeitsvektor
ω beschrieben werden. Im körperfesten Koordinatensystem K ist J konstant:

L = J ·ω (2)

Damit wird Gleichung (1) zu

K M =
K J ·

Kω̇+
Kω×

(K J ·
Kω

)
(3)

Die Lösung ω dieses Systems von drei Differentialgleichungen ist die gesuchte Bewegung
eines beliebigen Kreisels.

Für die folgende Darstellung wird ein symmetrischer Kreisel (z.B. eine kreisrunde Scheibe)
angenommen, so daß sich der Trägheitstensor vereinfacht:

K J =

 Jxy 0 0
0 Jxy 0
0 0 Jz

 (4)

1 Nutation

Unter Nutation versteht man die kräftefreie Rotationsbewegung eines starren Körpers, so daß
M = 0. Es handelt sich also um die Lösung des homogenen Differentialgleichungssystems.

1.1 Im körperfesten Koordinatensystem K

Gleichung (3) liefert das Differentialgleichungssystem

0 = Jxy
Kω̇x +

(
Jz − Jxy

)
Kωy

Kωz

0 = Jxy
Kω̇y −

(
Jz − Jxy

)
Kωx

Kωz

0 = Jz
Kω̇z

(5)
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Als Lösung ergibt sich die Nutationsbewegung ωK
n ausgedrückt in Koordinaten des Systems

K als KωK
n . Sie beschreibt die Bewegung des Systems K relativ zu B:

KωK
n =

 A cos(ωK
N t +ψ)

A sin(ωK
N t +ψ)

Kωz

 (6)

ωK
N :=

Jz − Jxy

Jxy
ωz (7)

mit A als Amplitude der Nutationsbewegung und ψ der Phasenlage. Beide sind von Anfangs-
bzw. Randwerten abhängig. Die Rotationsfrequenz des Körpers um seine z-Achse ist konstant.
Die Größe ωK

N heißt Nutationsfrequenz. Sie beschreibt, mit welcher Geschwindigkeit der im
Basissytem feste Drehimpulsvektor K L im System K um die körperfeste z-Achse taumelt.

Diese Betrachtung gilt in dem vollständig mitbewegten Koordinatensystem K , das sich also
mit ωz um seine z-Achse dreht.

1.2 In einem Zwischensystem Z

Es erfolgt eine weitere Betrachtung in einem Zwischensystem Z , das zwar die Körperbewegung
um dessen x- und y-Achsen mitmacht, allerdings um die z-Achse relativ zu B fest ist. Dies ist
möglich, da Kωz = const. In diesem Fall ändern sich die Differentialgleichungen wie folgt. Es
wird hierbei weiterhin der Bezeichner ωz verwendet, da die Größe konstant ist und eine klare
Bedeutung auch im System Z hat:

0 = Jxy
Zω̇x + Jz

Zωyωz

0 = Jxy
Zω̇y − Jz

Zωxωz
(8)

Als Lösung ergibt sich die Nutationsbewegung ωZ
n ausgedrückt in Koordinaten des Systems

Z als ZωZ
n . Sie beschreibt die Bewegung des Systems Z relativ zu B:

ZωZ
n =

 A cos(ωZ
N t +ψ)

A sin(ωZ
N t +ψ)

0

 (9)

ωZ
N :=

Jz

Jxy
ωz (10)

Die Nutationsfrequenz ωZ
N beschreibt, mit welcher Geschwindigkeit der im Basissytem feste

Drehimpulsvektor K L im System Z um die körperfeste z-Achse taumelt.
Dasselbe Ergebnis kann auch direkt aus (7) anschaulich abgeleitet werden. Da das System

K gegenüber Z mit der Winkelgeschwindigkeit ωz um die gemeinsame z-Achse rotiert, besitzt
jede Rotationsgeschwindigkeit um diese Achse einen Versatz von ωz . Damit ergibt sich

ωZ
N = ωK

N +ωz

2



1.3 Im Basiskoordinatensystem B

Für einen externen Beobachter aus System B ergibt sich eine weitere unterschiedliche Nutati-
onsfrequenz ωB

N . Eine Koordinatentransformation ergibt die Taumelbewegung der körperfesten
z-Achse sowie der Rotationsachse ωK

n um die im Basissystem B feste Gesamtdrehimpulsachse
L.

Der Gesamtdrehimpuls kann als Summe zweier Terme ausgedrückt werden. Mit (2) und (4)
ergibt sich

L = Jxyω
K
n +

(
Jz − Jxy

)
ωz (11)

L = Jxyω
Z
n + Jzωz

Wegen der Euler-Gleichung (1) gilt für die Rotationsgeschwindigkeit ωz in Richtung der kör-
perfesten z-Achse folgende Beziehung, in die (11) für ωK

n eingesetzt wird (identische Vorge-
hensweise für ωZ

n möglich):

ω̇z = ωK
n ×ωz

=

(
L
Jxy

−
Jz − Jxy

Jxy
ωz

)
×ωz

=
L
Jxy

×ωz

Es ergibt sich also die Nutationsbewegung ωB
n ausgedrückt in Koordinaten des Systems B als

BωB
n . Sie beschreibt die Bewegung des Systems Z relativ zu B:

BωB
n =

 A cos(ωB
N t +ψ)

A sin(ωB
N t +ψ)

0

 (12)

ωB
N :=

L
Jxy

(13)

2 Präzession

Präzession ist die Rotationsbewegung eines starren Körpers, die unter äußerer Drehmomentein-
wirkung erfolgt, also für M 6= 0. Für diesen Fall werden die homogenen Differentialgleichungen
(5) bzw. (8) durch nichthomogene Terme von M ergänzt. Zu der freien Nutationsbewegung ωn

kommen so zusätzliche Bewegungsterme hinzu.
Im System K ergibt sich eine Präzessionsbewegung ωK mit der Präzessionsgeschwindigkeit
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ωK
P . Sie beschreibt die Bewegung des Systems K relativ zu B:

KωK
=

KωK
n +


KωK

Px
KωK

Py∫ K Mz
Jz

dt

 (14)

KωK
Px :=

KMy(
Jxy − Jz

)
Kωz

KωK
Py :=

−
KMx(

Jxy − Jz
)

Kωz

M = ωK
P ×ωz

(
Jxy − Jz

)
Im System Z ergibt sich eine Präzessionsbewegung ωZ mit der Präzessionsgeschwindigkeit

ωZ
P . Sie beschreibt die Bewegung des Systems Z relativ zu B:

ZωZ
=

ZωZ
n +


ZωZ

Px
ZωZ

Py∫ ZMz
Jz

dt

 (15)

ZωZ
Px :=

−
ZMy

Jz
Kωz

ZωZ
Py :=

ZMx

Jz
Kωz

M = ωZ
P ×ωz Jz

Während die Rotation um die z-Achse durch ein angreifendes Drehmoment Mz lediglich ge-
wöhnlich beschleunigt wird, erfahren die beiden anderen Achsen eine um 90◦ zum angreifenden
Moment versetzte gleichförmige Bewegung. Diese Bewegung heißt Präzession. Zu beachten ist,
daß bei der Bewegung nach (14) das Moment K M im Koordinatensystem K gegeben sind, was
einem mit dem Körper mitrotierten Moment entspricht. Bei (15) bedeutet ein konstantes Z M ein
in Z festes Moment.
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