07.08.2006 Informatik 1/4
© calle

Sprachbeschreibung

EBNF =Regel , {Regel} ;

Regel = links , "=", rechts, ";" ;

links = nonterminal ;

rechts = (terminal | nonterminal | rund | eckig | geschweift | senkrecht) , {"," , rechts} ;
rund ="(",rechts,")"; /I Gruppierung

eckig ="[",rechts,"]"; // ein oder kein mal

geschweift ="{", rechts,"}"; // beliebig haufige Wiederholung (auch kein mal)
senkrecht =rechts, {"|", rechts} ; /I Alternativen (entweder oder)
terminal =""" text,""";

nonterminal = buchstabe,{alphanum} ;

text = zeichen,{zeichen} ;

zeichen = (buchstabe | zahl | sonderzeichen) ;

alphanum = (buchstabe | zahl) ;

Hoare-Kalkiil
Hoare-Tripel {P} S {R}
Axiom der leeren Anweisung {P} NOP {P}
Zuweisungsaxiom {R(x=E)} x:=E {R} {P} x:=E {[P(x=E™")}
Axiom der nichtterminierenden Anweisung {P} Abort {false}

Regel der sequenziellen Komposition {P} S, {Q}

{0} S (R} = (P} Si5: {R}
Regel der Fallunterscheidung {P A B} S; {R}
{PA-B} S {R} = {P} IFBTHENS,ELSES,FI {R}
Regel der Iteration {B A I} S {I} = {I} WHILEBDO SEND {-B A}
Terminierungsregel {B A I A 1=k} S {7t<k}
INT<c = -B
"S terminiert" = "WHILE B DO S END terminiert"
Regel fiir Prozeduren PROC p(VAR x:T); S; ENDp;
{0} S (R} = {0kx=BE)} pE) {R(x=E)}
Verstirkungs- / Abschwichungsregel P = P’
R'=R
{P} § {R} = {P} S {R}
Faustregeln zum Finden der Invarianten und der Schleifenbedingung
I2PUR (P und R geeignet abschwéchen)
B2 -R (Es sollte von R der Teil fehlen, der in / enthalten ist)
O-Kalkiil

feO@ < 3Tce R,neN:Vn>ng: f(n)<c-gn)
Regeln f € 0@
k - O(f) = O(f), k=const
O(0(h)) = O(f)
O®) - O(g) = O(f - g)
O - g) =1 - 0(g)
O) + O(g) = O(f + g)
f+0(g) cO(f+g)
O(f) + O(g) = O(f), falls O(g) < O(f)
>a;n € O(n¥), a>0, k=max(i)

Rekurrenzen

A() = A(n-1) + b n* O™
A(m)=cA(n-1)+bn* c>1 O(c"

A(n) = c A("/y) + b n* o>d 0m©)
A(m) =c A("/y) +bn* c<d* O(n")

A(m) =c A("/y) +bn* c=d* O(n* log(n))

07.08.2006
© calle

Problemlosung

Deklarationen
ps: Zustand
psL: Zustandsliste

optimal? (ps):
successors (ps):
feasible (psL):

Informatik

Ist ps Losung?
Liefert alle Nachfolger von ps
Liefert alle zuldssigen Zustdnde aus psL

insert (psLl,psL2): sortiert psLl in psL2 entsprechend des Algorithmus'

PROCEDURE Solve (Anfang:State) :State

2/4

VAR
psL:LIST OF State
BEGIN
psL:=Anfang
WHILE (NOT optimal? (ft (psL))) AND (psL#H)
insert (feasible (successors (ft (psL))), rt (psL))
END WHILE
RETURN (ft (psL))
END PROC
Algorithmus Voraussetzung psL insert feasible
Tiefensuche endlicher Suchraum Stack (LIFO) vorn anhéngen erlaubt
1 Pfad AND NOT in (psL)
Breitensuche Suchraum Queue (FIFO) hinten anhidngen erlaubt
1 Ebene [AND unbekannt]
B'n' B " + lokales Krit: nach g nach g sortiert "
bisherige Kosten g sortierte Queue einfiigen
A* " + untere Schranke nach f*=g+h* nach £* sortiert "
fiir Restkosten h* sortierte Queue einfiigen, doppelte
durch kiirzere ersetzen
greedy lokales Krit zum Variable (ps) zuweisen best

globalen Optimum

Tiefensuche rekursiv
PROCEDURE Tiefensuche (Anfang:State) :State
VAR
best:State
PROCEDURE BT (psL:LIST OF State)
VAR
p:State
BEGIN

IF optimal? (ft (psl)) THEN IF best>ft (psL) THEN best:=ft (psL)

ELSE FOR p:=feasible (successors (ft (psL)))

BT (p++psL)
END FOR
END IF
END PROC
BEGIN
best:=0
BT (Anfang)

RETURN (best)
END PROC

07.08.2006 Informatik 3/4
© calle

Relaxation
Omin(X,Y) = Da(X,y) < ... £ Dia(xy) < Di(x,y) < ... < Do(x,y)
Dii(x,y) = min(Di(x,y),Di(x,a) + edge(a,y))

Dijkstra-Algorithmus (single-source shortest-paths problem)

PROCEDURE Dijkstra (Graph:Nodes, Start:Node, VAR D:ARRAY OF cost,VAR P:ARRAY OF Node)
VAR

x,u:Node
BEGIN
FOR x:=Graph //Noch keine Wege gefunden
D[x] :=0
P[x]:=0
END FOR
D[Start]:=0 //Hier sind wir schon
WHILE Graph#f //Alle Knoten abarbeiten
u:=min (Graph) //Knoten mit kleinster Entfernung entfernen
FOR x:=successors (u) //Gibt es eine Abkiirzung lber u?
IF D[x]>D[u]+edge(u,x) THEN //Ja!
D[x]:=D[u]+edge (u, x) //Relaxation
P[x]:=u //Vorgdnger merken flr Wegrekonstruktion
END IF
END FOR
END WHILE
END PROC

PROCEDURE Pfad (P:ARRAY OF Node, Start:Node, Ziel:Node) :LIST OF Node
BEGIN
IF Start=Ziel THEN RETURN (Start)
ELSE RETURN (Pfad (P, Start,P[Ziel])++Ziel)
END IF
END PROC

Floyd-Warshall-Algorithmus (all-pairs shortest-paths problem)
PROCEDURE FW (Graph:Nodes, VAR D:ARRAY OF cost,VAR P:ARRAY OF Node)
VAR
x,y,u:Node
BEGIN
FOR x:=Graph //Noch keine Wege gefunden
FOR y:=Graph
D[x,vy] :=edge (x,V)
Plx,y]:=#0
END FOR
END FOR

FOR u:=Graph //Alle Knoten abarbeiten
FOR x:=Graph
FOR y:=Graph
IF D[x,y]>D[x,ul+D[u,y] THEN //Gibt es eine Abkiirzung lber u?

Dlx,yl:=D[x,u]+D[u,y] //Relaxation
P[x,y]:=u //Vorgdnger merken fiir Wegrekonstruktion
END IF
END FOR
END FOR
END FOR
END PROC

PROCEDURE Pfad (P:ARRAY OF Node, x:Node,y:Node) :LIST OF Node
BEGIN
IF P[x,y]=# THEN RETURN (@)
ELSE RETURN (Pfad (P, Start,P[x,y])++P[x,y]++Pfad(P,P[x,y], Ziel))
END IF
END PROC

07.08.2006

© calle

Semaphoren

class semaphore(
private: ProcessList queue;

public:

int counter;
semaphore (int startwert)

Informatik

{counter=startwert; };

void P (void)
void V(void)
}i

{if (counter—--<=0)
{if (counter++< 0)

class semacount:public semaphore,public int{

public:
Vi

Synchronisation
Keine Priorisierung

semacount Zaehlerl(1,0),Zaehler2(1,0);

semaphore Ausschlussl (m),Ausschluss2 (n),Ausschluss(1l);

Process2 () {
Ausschluss2.P();
Zaehler2.P () ;

Processl () {
Ausschlussl.P();
Zaehlerl.P();

if (!Zaehlerl++) Ausschluss.P();

Zaehlerl.V () ;

//Kritischer Abschnitt

Zaehlerl.P();

if (!--Zaehlerl) Ausschluss.V();

Zaehlerl.V();
Ausschlussl.V();

BlockProcess (queue); };
ContinueProcess (queue); };

semacount (int i, int j=0) :semaphore (i), int (J) {};

if (!Zaehler2++) Ausschluss.P();

Zaehler2.V () ;
//Kritischer Abschnitt
Zaehler2.P();

if (!--Zaehler2) Ausschluss.V();

Zaehler2.V();
Ausschluss2.V () ;

4/4

Priorisierung von Prozess 1

semaphore Halt (1),Vorhalt (1);

Processl () {
Zaehler.P();

if (!Zaehlerl++) {Halt.P ();
Ausschluss.P();}

Zaehlerl.V();
Ausschlussl.P();

//Kritischer Abschnitt

Ausschlussl.V{();
Zaehlerl.P();

if (!--Zaehlerl) {Ausschluss.V{();
Halt.V();}

Zaehlerl.V();

1. Leser-Schreiber-Problem
Schreiber () {
Ausschluss.P();
//Kritischer Abschnitt
Ausschluss.V () ;
}

2. Leser-Schreiber-Problem
Schreiber () {
Zaehlerl.P();
if (!Zaehlerl++) Halt.P();
Zaehlerl.V();
Ausschluss.P();
//Kritischer Abschnitt
Ausschluss.V () ;
Zaehlerl.P();
if (!--Zaehlerl) Halt.V();
Zaehlerl.V();

Process2 () {
Ausschluss2.P();
Vorhalt.P () ;Halt.P();

Zaehler2.P () ;

if (!Zaehler2++) Ausschluss.P();
Zaehler2.V () ;
Halt .V () ;Vorhalt.V();
//Kritischer Abschnitt
Zaehler2.P () ;

if (!--Zaehler2) Ausschluss.V();

Zaehler2.V () ;
Ausschluss2.V () ;

}

Leser () {

Zaehlerl.P();
if (!Zaehlerl++) Ausschluss.P();
Zaehlerl.V () ;
//Kritischer Abschnitt
Zaehlerl.P();
if (!--Zaehlerl) Ausschluss.V();
Zaehlerl.V();

}

Leser () {

Vorhalt.P();Halt.P();
Zaehler2.P();

if (!Zaehler2++) Ausschluss.P();
Zaehler2.V();
Halt.V();Vorhalt.V();

//Kritischer Abschnitt

Zaehler2.P();

if (!--Zaehler2) Ausschluss.V();
Zaehler2.V();

