
07.08.2006 Informatik 1/4
© calle

Sprachbeschreibung
EBNF = Regel , {Regel} ;
Regel = links , "=" , rechts , ";" ;
links = nonterminal ;
rechts = (terminal | nonterminal | rund | eckig | geschweift | senkrecht) , {"," , rechts} ;
rund = "(" , rechts , ")" ; // Gruppierung
eckig = "[" , rechts , "]" ; // ein oder kein mal
geschweift = "{" , rechts , "}" ; // beliebig häufige Wiederholung (auch kein mal)
senkrecht = rechts , {"|" , rechts} ; // Alternativen (entweder oder)
terminal = """ , text , """ ;
nonterminal = buchstabe,{alphanum} ;
text = zeichen,{zeichen} ;
zeichen = (buchstabe | zahl | sonderzeichen) ;
alphanum = (buchstabe | zahl) ;

Hoare­Kalkül
Hoare­Tripel {P} S {R}

Axiom der leeren Anweisung {P} NOP {P}
Zuweisungsaxiom {R(x=E)} x:=E {R} {P} x:=E {P(x=E­1)}

Axiom der nichtterminierenden Anweisung {P} Abort {false}

Regel der sequenziellen Komposition {P} S1 {Q}
{Q} S2 {R} ⇒ {P} S1;S2 {R}

Regel der Fallunterscheidung {P ∧ B} S1 {R}
{P ∧ ­B} S2 {R} ⇒ {P} IF B THEN S1 ELSE S2 FI {R}

Regel der Iteration {B ∧ I} S {I} ⇒ {I} WHILE B DO S END {­B ∧ I}
Terminierungsregel {B ∧ I ∧ =k} S {<k}

I ∧ <c ⇒ ­B
"S terminiert" ⇒ "WHILE B DO S END terminiert"

Regel für Prozeduren PROC p(VAR x:T); S; ENDp;
{Q} S {R} ⇒ {Q(x=E)} p(E) {R(x=E)}

Verstärkungs­ / Abschwächungsregel P ⇒ P'
R' ⇒ R
{P'} S {R'} ⇒ {P} S {R}

Faustregeln zum Finden der Invarianten und der Schleifenbedingung
I ⊇ P ∪ R (P und R geeignet abschwächen)
B ⊇ ­R (Es sollte von R der Teil fehlen, der in I enthalten ist)

O­Kalkül
f  O(g) ⇔ ∃ c  ℝ+, n0 ∈ ℕ: ∀ n>n0: f(n) ≤ c⋅g(n)
Regeln f ∈ O(f)

k ⋅ O(f) = O(f), k=const
O(O(f)) = O(f)

O(f) ⋅ O(g) = O(f ⋅ g)
O(f ⋅ g) = f ⋅ O(g)

O(f) + O(g) = O(f + g)
f + O(g) ⊆ O(f + g)

O(f) + O(g) = O(f), falls O(g) ⊆ O(f)
∑ai ni  O(nk), ak>0, k=max(i)

Rekurrenzen
A(n) = A(n­1) + b nk O(nk+1)
A(n) = c A(n­1) + b nk c>1 O(cn)
A(n) = c A(n/d) + b nk c>dk O(nlog

d
(c))

A(n) = c A(n/d) + b nk c<dk O(nk)
A(n) = c A(n/d) + b nk c=dk O(nk log(n))

07.08.2006 Informatik 2/4
© calle

Problemlösung
Deklarationen
ps: Zustand
psL: Zustandsliste

optimal?(ps): Ist ps Lösung?
successors(ps): Liefert alle Nachfolger von ps
feasible(psL): Liefert alle zulässigen Zustände aus psL
insert(psL1,psL2): sortiert psL1 in psL2 entsprechend des Algorithmus'

PROCEDURE Solve(Anfang:State):State
 VAR
 psL:LIST OF State
 BEGIN
 psL:=Anfang
 WHILE (NOT optimal?(ft(psL))) AND (psL≠∅)
 insert(feasible(successors(ft(psL))),rt(psL))
 END WHILE
 RETURN(ft(psL))
 END PROC

Algorithmus Voraussetzung psL insert feasible

Tiefensuche endlicher Suchraum Stack (LIFO)
1 Pfad

vorn anhängen erlaubt
AND NOT in(psL)

Breitensuche Suchraum Queue (FIFO)
1 Ebene

hinten anhängen erlaubt
[AND unbekannt]

B'n'B " + lokales Krit:
bisherige Kosten g

nach g
sortierte Queue

nach g sortiert
einfügen

"

A* " + untere Schranke
für Restkosten h*

nach f*=g+h*
sortierte Queue

nach f* sortiert
einfügen, doppelte
durch kürzere ersetzen

"

greedy lokales Krit zum
globalen Optimum

Variable (ps) zuweisen best

Tiefensuche rekursiv
PROCEDURE Tiefensuche(Anfang:State):State
 VAR
 best:State
 PROCEDURE BT(psL:LIST OF State)
 VAR
 p:State
 BEGIN
 IF optimal?(ft(psL)) THEN IF best>ft(psL) THEN best:=ft(psL)
 ELSE FOR p:=feasible(successors(ft(psL)))
 BT(p++psL)
 END FOR
 END IF
 END PROC

 BEGIN
 best:=∅
 BT(Anfang)
 RETURN(best)
 END PROC

07.08.2006 Informatik 3/4
© calle

Relaxation
min(x,y) = Dn(x,y) ≤ ... ≤ Di+1(x,y) ≤ Di(x,y) ≤ ... ≤ D0(x,y)
Di+1(x,y) = min(Di(x,y),Di(x,a) + edge(a,y))

Dijkstra­Algorithmus (single­source shortest­paths problem)
PROCEDURE Dijkstra(Graph:Nodes,Start:Node,VAR D:ARRAY OF cost,VAR P:ARRAY OF Node)
 VAR
 x,u:Node
 BEGIN
 FOR x:=Graph //Noch keine Wege gefunden
 D[x]:=∞
 P[x]:=∅
 END FOR
 D[Start]:=0 //Hier sind wir schon

 WHILE Graph≠∅ //Alle Knoten abarbeiten
 u:=min(Graph) //Knoten mit kleinster Entfernung entfernen
 FOR x:=successors(u) //Gibt es eine Abkürzung über u?
 IF D[x]>D[u]+edge(u,x) THEN //Ja!
 D[x]:=D[u]+edge(u,x) //Relaxation
 P[x]:=u //Vorgänger merken für Wegrekonstruktion
 END IF
 END FOR
 END WHILE
 END PROC

PROCEDURE Pfad(P:ARRAY OF Node,Start:Node,Ziel:Node):LIST OF Node
 BEGIN
 IF Start=Ziel THEN RETURN(Start)
 ELSE RETURN(Pfad(P,Start,P[Ziel])++Ziel)
 END IF
 END PROC

Floyd­Warshall­Algorithmus (all­pairs shortest­paths problem)
PROCEDURE FW(Graph:Nodes,VAR D:ARRAY OF cost,VAR P:ARRAY OF Node)
 VAR
 x,y,u:Node
 BEGIN
 FOR x:=Graph //Noch keine Wege gefunden
 FOR y:=Graph
 D[x,y]:=edge(x,y)
 P[x,y]:=∅
 END FOR
 END FOR

 FOR u:=Graph //Alle Knoten abarbeiten
 FOR x:=Graph
 FOR y:=Graph
 IF D[x,y]>D[x,u]+D[u,y] THEN //Gibt es eine Abkürzung über u?
 D[x,y]:=D[x,u]+D[u,y] //Relaxation
 P[x,y]:=u //Vorgänger merken für Wegrekonstruktion
 END IF
 END FOR
 END FOR
 END FOR
 END PROC

PROCEDURE Pfad(P:ARRAY OF Node,x:Node,y:Node):LIST OF Node
 BEGIN
 IF P[x,y]=∅ THEN RETURN(∅)
 ELSE RETURN(Pfad(P,Start,P[x,y])++P[x,y]++Pfad(P,P[x,y],Ziel))
 END IF
 END PROC

07.08.2006 Informatik 4/4
© calle

Semaphoren
class semaphore{
private: ProcessList queue;
 int counter;
public: semaphore(int startwert) {counter=startwert;};
 void P(void) {if(counter­­<=0) BlockProcess(queue);};
 void V(void) {if(counter++< 0) ContinueProcess(queue);};
};

class semacount:public semaphore,public int{
public: semacount(int i,int j=0):semaphore(i),int(j) {};
};

Synchronisation
Keine Priorisierung
semacount Zaehler1(1,0),Zaehler2(1,0);
semaphore Ausschluss1(m),Ausschluss2(n),Ausschluss(1);
Process1(){
 Ausschluss1.P();
 Zaehler1.P();
 if(!Zaehler1++) Ausschluss.P();
 Zaehler1.V();
 //Kritischer Abschnitt
 Zaehler1.P();
 if(!­­Zaehler1) Ausschluss.V();
 Zaehler1.V();
 Ausschluss1.V();
}

Process2(){
 Ausschluss2.P();
 Zaehler2.P();
 if(!Zaehler2++) Ausschluss.P();
 Zaehler2.V();
 //Kritischer Abschnitt
 Zaehler2.P();
 if(!­­Zaehler2) Ausschluss.V();
 Zaehler2.V();
 Ausschluss2.V();
}

Priorisierung von Prozess 1
semaphore Halt(1),Vorhalt(1);
Process1(){
 Zaehler.P();
 if(!Zaehler1++){Halt.P();
 Ausschluss.P();}
 Zaehler1.V();
 Ausschluss1.P();
 //Kritischer Abschnitt
 Ausschluss1.V();
 Zaehler1.P();
 if(!­­Zaehler1) {Ausschluss.V();
 Halt.V();}
 Zaehler1.V();
}

Process2(){
 Ausschluss2.P();
 Vorhalt.P();Halt.P();
 Zaehler2.P();
 if(!Zaehler2++) Ausschluss.P();
 Zaehler2.V();
 Halt.V();Vorhalt.V();
 //Kritischer Abschnitt
 Zaehler2.P();
 if(!­­Zaehler2) Ausschluss.V();
 Zaehler2.V();
 Ausschluss2.V();
}

1. Leser­Schreiber­Problem
Schreiber(){
 Ausschluss.P();
 //Kritischer Abschnitt
 Ausschluss.V();
}

Leser(){
 Zaehler1.P();
 if(!Zaehler1++) Ausschluss.P();
 Zaehler1.V();
 //Kritischer Abschnitt
 Zaehler1.P();
 if(!­­Zaehler1) Ausschluss.V();
 Zaehler1.V();
}

2. Leser­Schreiber­Problem
Schreiber(){
 Zaehler1.P();
 if(!Zaehler1++) Halt.P();
 Zaehler1.V();
 Ausschluss.P();
 //Kritischer Abschnitt
 Ausschluss.V();
 Zaehler1.P();
 if(!­­Zaehler1) Halt.V();
 Zaehler1.V();
}

Leser(){
 Vorhalt.P();Halt.P();
 Zaehler2.P();
 if(!Zaehler2++) Ausschluss.P();
 Zaehler2.V();
 Halt.V();Vorhalt.V();
 //Kritischer Abschnitt
 Zaehler2.P();
 if(!­­Zaehler2) Ausschluss.V();
 Zaehler2.V();
}

