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Elementarsignale

Signumfunktion

sgn(t) =


−1 für t < 0
0 für t = 0
1 für t > 0

 = 2σ(t) − 1 = 2
t∫

−∞

δ(τ)dτ − 1 sgn(n) =

−1 für n < 0
1 für n ≥ 0

 = 2σ(n) − 1 = 2
n∑

v=−∞
δ(ν) − 1

F
(
sgn(t)

)
= 2

iω L
(
sgn(t)

)
= 2

s

Sprungfunktion

σ(t) =


0 für t < 0
0,5 für t = 0
1 für t > 0

 = 1
2 sgn(t) + 1

2 =
t∫

−∞

δ(τ)dτ =
∞∫
0
δ(t − τ)dτ σ(n) =

0 für n < 0
1 für n ≥ 0

 = 1
2 sgn(n) + 1

2 =
t∑

ν=−∞
δ(ν) =

∞∑
ν=0
δ(n − ν)

F (σ(t)) = 1
iω + πδ(ω) L (σ(t)) = 1

s

Rechteckfunktion

ΠT (t) =


1 für |t| < T/2
0,5 für |t| = T/2
0 für |t| > T/2

 = σ
(
t + T

2

)
− σ

(
t − T

2

)
ΠM(n) =

1 für |n| ≤ (M − 1) /2
0 für |n| > (M − 1) /2

 = σ
(
n + M−1

2

)
− σ

(
n − M+1

2

)
F (ΠT (t)) = T si

(
ωT
2

)
F (ΠM(n)) =

sin(MωT/2)
sin(ωT/2)

Dreickfunktion

ΛT (t)=

1−|t| /T für |t| ≤ T
0 für |t| > T

= 1
TΠT (t) ? ΠT (t) = rT (t+T )−rT (t) ΛM(n) =

1 − |n| /M für |n| ≤ M
0 für |n| > M

 = 1
MΠM(n) ? ΠM(n)

F (ΛT (t)) = T si
(
ωT
2

)2

Rampenfunktion

rT (t) =


0 für t < 0
t/T für 0 ≤ t ≤ T
1 für t > T

 = 1
T

t∫
−∞

ΠT

(
τ − T

2

)
dτ

= t
TΠT

(
t − T

2

)
+ σ(t − T )

rM(n) =


0 für n < 0
n/M für 0 ≤ n ≤ M
1 für n > M

 = 1
M

(
n∑

ν=−∞
ΠM

(
ν − M

2

)
− 1

)

F (rT (t)) = 1
iω si

(
ωT
2

)
exp

(
−iωT

2

)
+ πδ(ω)

si-Funktion (Spaltfunktion)

si(ω0t) =
sin(ω0t)
ω0t si(ω0n) =

sin(ω0nT )
ω0nT

F (si(ωT t)) = T
2ΠωT

(
ω
2

)
Deltafunktion

δ(t) =

∞ für t = 0
0 für t , 0

 = lim
∆→0

(
1
∆
Π∆(t)

)
=

dσ(t)
dt

= 1
2π

∞∫
−∞

exp(iωt)dω = Ω
2π

∞∑
k=−∞

exp(ikΩt)

δ(n) =

1 für n = 0
0 für n , 0

 = Π1(n) = σ(n) − σ(n − 1)

= T
2π

x+2π/T∫
x

exp(iωnT )dω

F (δ(t + t0)) = exp(iωt0) L (δ(t + t0)) = exp(st0) F (δ(n + n0)) = exp(iωn0T ) Z (δ(n + n0)) = zn0

u(t + t0) = u(t) ? δ(t + t0) =
∞∫
−∞

u(τ)δ(t + t0 − τ)dτ u(n + n0) = u(n) ? δ(n + n0) =
∞∑

ν=−∞
u(ν)δ(n + n0 − ν)

Deltakamm

δT (t) =
∞∑

τ=−∞
δ(t − τT ) δM(n) =

∞∑
ν=−∞
δ(n − νM)

F (δT (t)) = ωTδωT (ω) Z (δM(n)) =
∞∑

ν=−∞
z−νM

uT (t) = u(t) ? δT (t) =
∞∑

k=−∞

u(t − kT )
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Signaleigenschaften

Arithmetischer Mittelwert

mu(t1, t2) = 1
t2−t1

t2∫
t1

u(t)dt mu(n1, n2) = 1
n2−n1+1

n2∑
ν=n1

u(ν) mu = mu(−∞,∞) = muT (τ, τ + T )

Gleichrichtmittelwert

m|u|(t1, t2) = 1
t2−t1

t2∫
t1

|u(t)| dt m|u|(n1, n2) = 1
n2−n1+1

n2∑
ν=n1

|u(ν)| m|u| = m|u|(−∞,∞) = m|uT |(τ, τ + T )

Effektivwert

mu2 (t1, t2) = 1
t2−t1

t2∫
t1

u(t)2dt mu2 (n1, n2) = 1
n2−n1+1

n2∑
ν=n1

u(ν)2 Ueff = mu2 = mu2 (−∞,∞) = mu2
T
(τ, τ + T )

Energie

Wu(t1, t2) = 1
Z

t2∫
t1

u(t)2dt = 1
Z ruu(t1, t2)(0) Wu(n1, n2) = 1

Z

n2∑
ν=n1

u(ν)2 = 1
Z ruu(n1, n2)(0) Wu = Wu(−∞,∞) = WuT (τ, τ+T )= 1

Z ruu(0)

Leistung

Pu(t1, t2) = 1
t2−t1

Wu(t1, t2) Pu(n1, n2) = 1
n2−n1+1 Wu(n1, n2) Pu = Pu(−∞,∞) = PuT (τ, τ + T )

Varianz

σ2
u(t1, t2) = 1

t2−t1

t2∫
t1

(u(t)−mu(t1, t2))2 dt

= ZPu(t1, t2) − mu(t1, t2)2

σ2
u(n1, n2) = 1

n2−n1+1

n2∑
ν=n1

(u(ν)−mu(n1, n2))2

= ZPu(n1, n2) − mu(n1, n2)2

σ2
u = σ2

u(−∞,∞) = σ2
uT

(τ, τ + T )

= ZPu − m2
u

Kreuzkorrelationsfunktion

ruv(t1, t2)(t) =
t2∫

t1

u(τ)v(t + τ)dτ ruv(n1, n2)(n) =
n2−n∑
ν=n1

u(ν)v(n + ν) ruv(t) = ruv(−∞,∞)(t) = ruT vT (τ, τ + T )(t)

normiert Leistungssignale

F (ruv(t)) = U(ω)V(ω) ρuv(t) =
ruv(t)
ruv(0)

Lruv(t) = lim
T→∞

 1
T

∫
T

u(τ)v(t + τ)dτ


Signal-Verhältnis Signal-Abstand

SR(u, v) = Pu
Pv

=
U2

eff

V2
eff

SRdB(u, v) = log10

(
Pu
Pv

)
[B] = 2 log10

(
Ueff

Veff

)
[B]

Hilberttransformation

H (u(t)) = u(t) ? 1
t =

∞∫
−∞

u(τ)
t−τ dτ H (H (u(t))) = u(t) ? 1

t ?
1
t = −π2u(t)
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Digitalisierung

Ideale Abtastung

u?(t) = u/t)δT (t) =
∞∑

n=−∞
u(nT )δ(t − nT ) a q U?(ω) = 1

2πU(ω) ? ωTδωT (ω) = 1
T

∞∑
k=−∞

U(ω − kωT )

u(t) = u?(t) ? ThTP

(
ωT
2

)
(t) =

∞∑
n=−∞

u(nT )si
(
ωT
2 (t − nT )

) a q U(ω) = U?(ω)T HTP

(
ωT
2

)
(ω)

Signalausblendung (shape-top sampling, natural sampling) mit 0 < α ≤ 1

ua(t) = u(t) (ΠαT (t) ? δT (t)) a q Ua(ω) = 1
2πU(ω) ? αT si

(
ωαT

2

)
ωTδωT (ω) = α

∞∑
k=−∞

si(kπα)U(ω − kωT )

u(t) = ua(t) ? 1
α

hTP

(
ωT
2

)
(t) a q U(ω) = Ua(ω) 1

α
HTP

(
ωT
2

)
(ω)

Signalverbreiterung (flat-top sampling)

ua(t) = u?(t) ? ΠαT (t) a q Ua(ω) = αsi
(
ωαT

2

) ∞∑
k=−∞

U(ω − kωT )

Abtastrate Bandpaßsignale

fT ≥ 2 fg fT = 2
n fgmax mit n ∈ N ∧ fgmax

fB
− 1 < n ≤ fgmax

fB

Quantisierungsrauschen q(t) (Quantisierungsstufenhöhe ∆, Bitanzahl m)
Pq = 1

Z
∆2

12 = 1
Z

û2

22m·3 SNR(u) = SR(u, q) = α22m SNRdB(u) = 0,602m + log10(α) [B]

Spezielle Systeme

Bezeichnung Definition/Eigenschaften bei Pol-/Nullstellen bei diskreten PN

Stabil Wh < ∞ <(s∞) < 0 |z∞| < 1

Kausal

h(t < 0) = 0
∞∫
−∞

|ln(A(ω))|
1+ ω2

ω2
B

dω < ∞

h(t) = hg(t) + hu(t) a q H(ω) = Hg(ω) + Hu(ω)

hg(t) = hu(t)sgn(t) a q Hg(ω) = 1
iπH (Hu(ω))

R ≤ Q

(reale Systeme immer)

R ≤ Q

Linearphasig
(Stabil)

HLP(ω) = A(ω) exp(−iωt0) ϕLP(ω) = −ωt0

h(t0 + t) = h(t0 − t) ∨ h(t0 + t) = −h(t0 − t)

<(s0) = −<(s0) Q=0

(reale Systeme nie)

z0 = z−1
0 Q=0

t0 = TR/2

Allpaß (Stabil)

HAP(ω) = A0 exp(iϕ(ω)) AAP(ω) = A0 <(s0) = −<(s∞) R= Q

A0 =
∣∣∣∣ bR

aQ

∣∣∣∣ =
∣∣∣∣ b0

a0

∣∣∣∣
z0 = z−1

∞ R= Q

A0 =
∣∣∣∣ b0

a0

∣∣∣∣ R∏
r=1
|z0r |

=
∣∣∣∣ b0

a0

∣∣∣∣ Q∏
q=1

∣∣∣∣z−1
∞q

∣∣∣∣
br = HAP aR−r

Verzerrungsfrei
(Linearphasig und
Allpaß)

yVS(t) = αu(t − t0) HVS(ω) = A0 exp(−iωt0)

Minimalphasig/

Allpaßfrei (Kausal)

Hmin(ω) = A(ω) exp (iϕmin(ω))

ϕmin(ω) = H (ln (A(ω)))
<(s0|∞) < 0

∣∣∣z0|∞
∣∣∣ < 1

Nichtrekursiv Q = 0 h(n) = 1
a0

R∑
r=0

brδ(n − r) a q H(z) = 1
a0

R∑
r=0

brz−r =
b0
a0

R∏
r=1

(z−z0r)

zR

Reinrekursiv R = 0 h(n) a q H(z) =
b0

Q∑
q=0

aqz−q
=

b0
a0

zQ

Q∏
q=1

(z−z∞q)
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Systembeschreibung (Vierpol)

Vierpolparameter

H-Parameter

ue

ia

 =

h11 h12

h21 h22

 ·
ie

ua

 |H| = 1
y11

 1 −y12

y21 |Y|

 = 1
z22

 |Z| z12

−z21 1


Z-Parameter

ue

ua

 =

z11 z12

z21 z22

 ·
ieia

 |Z| = 1
h22

 |H| h12

−h21 1

 = 1
|Y|

 y22 −y12

−y21 y11


Y-Parameter

ieia
 =

y11 y12

y21 y22

 ·
ue

ua

 |Y| = 1
h11

 1 −h12

h21 |H|

 = 1
|Z|

 z22 −z12

−z21 z11


LTI-System (Linear Time Invariant)

Frequenzgang
H(ω) =

Y(ω)
U(ω) = Ah(ω) exp (iϕh(ω)) = H(s)|s=iω = H(z)|z=exp(iωT )

Amplitudengang Dämpfung=−Verstärkung

Ah(ω) = |H(ω)| ah(ω) = SRdB(U,Y) = −2 log10 (|H(ω)|) [B] = −vh(ω)

Phasengang Phasenlaufzeit

ϕh(ω) = arg (H(ω)) = −ωtphase(ω) tphase(ω) = −
ϕh(ω)
ω

Systemantworten

u(t) → y(t) = u(t) ? h(t) a q Y(s) = U(s)H(s) u(n) → y(n) = u(n) ? h(n) a q Y(z) = U(z)H(z)

Impulsantwort

δ(t) → h(t) =
dhσ(t)

dt
a q H(s) = sHσ(s) δ(n) → h(n) = hσ(n) − hσ(n−1) a q H(z) =

(
1 − z−1

)
Hσ(z)

Sprungantwort

σ(t) → hσ(t) =
t∫

−∞

h(τ)dτ a q Hσ(s) = s−1H(s) σ(n) → hσ(n) =
n∑

ν=−∞
h(n) a q Hσ(z) =

(
1 − z−1

)−1
H(z)

Exponentialsignale (unendlich ausgedehnt bzw. im eingeschwungenen Zustand)

u(t) = u0 exp(iω1t) → y(t) = u(t)H(ω1)

⇒ H(ω) =
y(t)
u(t) =

Zy

Zu

u(n) = u0 exp(iω1nT ) → y(n) = u(n)H(ω1)

⇒ H(ω) =
y(n)
u(n)

Pol-Nullstellen-Darstellung (Laplace-/Z-Transformation)

DGL
Q∑

q=0
aq

dqy(t)
dtq =

R∑
r=0

br
dru(t)

dtr

Q∑
q=0

aqy(n − q) =
R∑

r=0
bru(n − r)

Übertragungsfunktion

H(s) =
Y(s)
U(s) =

Z(s)=
R∑

r=0
brsr

N(s)=
Q∑

q=0
aqsq

= bR
aQ

R∏
r=1

(s−s0r)

Q∏
q=1

(s−s∞r)
H(z) =

Y(z)
U(z) =

R∑
r=0

brz−r

Q∑
q=0

aqz−q
= zQ−R b0

a0

R∏
r=1

(z−z0r)

Q∏
q=1

(z−z∞r)
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Zustandsmodell

ẋ(t) = f(x(t),u(t), t) x Zustandsvektor u Eingangsgrößen

y(t) = g(x(t),u(t), t) y Ausgangsgrößen

Linearisierung im Arbeitspunkt AP

ẋ ≈ f (xAP,uAP) + A · (x − xAP) + B · (u − uAP) A = ∂f
∂xT (xAP,uAP) B = ∂f

∂uT (xAP,uAP)

y ≈ g (xAP,uAP) + C · (x − xAP) + D · (u − uAP) C =
∂g
∂xT (xAP,uAP) D =

∂g
∂uT (xAP,uAP)

h(t) = C ·Ψ(t) · B + Dδ(t) a qH(s) = C · (s1 − A)−1
· B + D Impulsantwort

hσ(t) =
t∫

0
C ·Ψ(τ) · Bdτ + D = C · A−1Ψ(t) · B − C · A−1 · B + Dσ(t) a qHσ(s) = s−1C · (s1 − A)−1

· B + D Sprungantwort

x(t) = Ψ(t) · x(0) +
t∫

0
Ψ(t − τ) · B · u(τ)dτ Ψ(t) = exp(At) Bewegungsgleichung

y(t) = C ·Ψ(t) · x(0) +
t∫

0
C ·Ψ(t − τ) · B · u(τ)dτ + D · u(t) Ausgangsgleichung

Ks = −C · A−1 · B + D statische Verstärkung

Regelungsnormalform (R ≤ Q)

x=
aq
b0


y
...

dQ−1y
dtQ−1

 A=


0 1 0
...

. . .

0 0 1
−

a0
aQ

−
a1
aQ
· · · −

aQ−1
aQ

 B=


0
...

0
1

 C=

(
b0
aQ
−

bQa0

a2
Q

· · ·
bQ−1
aQ
−

bQaQ−1

a2
Q

)
D =

bQ
aQ

Ks =
b0
a0

Beobachtungsnormalform (R ≤ Q)

A=


0 · · · 0 −a0/aQ

1 0 −a1/aQ

. . .
...

0 1 −aQ−1/aQ

 B=


b0/aQ−bna0/a2

Q
...

bQ−1/aQ−bnaQ−1/a2
Q

 C=

(
0 · · · 0 1

)
D =

bQ
aQ

Ks =
b0
a0

Kanonische Normalform (λq Eigenwerte, λq Eigenvektoren von A)

x′ = V−1 · x A′=V−1 · A · V = diag(λq) B′ = V−1 · B C′ = C · V D′ = D V=

(
λ1 · · · λQ

)
Eigenbewegung Eigenlösung

Ψ′(t) = diag
(
exp(λqt)

)
Ψ′(t)·x′(0) =


exp(λ1t)x′1

...

exp(λqt)x′q

 Ψ(t)·x(0)=
Q∑

q=1
λq exp(λqt)x′q(0) xq(t)=λq exp(λqt)

Stabilität
Ljapunow

stabilLjapunow ⇔ ∀ε > 0 : ∃δ > 0 : ∀ ‖x(0)‖ < δ : ∀t > 0 : ‖x(t)‖ < ε ⇐ ∀λq : <(λq) ≤ 0

asymptotisch stabilLjapunow ⇔ stabilLjapunow ∧ lim
t→∞

(‖x(t)‖) = 0 ⇐ ∀λq : <(λq) < 0

Hurwitz (asymptotisch stabil)

det (A − λ1) =
n∑

i=0
aiλ

i = 0 D0 = a1 D1 =

∣∣∣∣∣∣ a1 a3

a0 a2

∣∣∣∣∣∣ D2 =

∣∣∣∣∣∣∣∣
a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣ · · ·

stabilHurwitz ⇔ (∀ai|0 ≤ i ≤ n : ai > 0) ∧ (∀Di|0 ≤ i ≤ n : Di > 0)
Routh (asymptotisch stabil)

zeile 1 =̂ an−0 an−2 an−4 · · · 0 zeile j =̂ z j,1 z j,2 · · ·

zeile 2 =̂ an−1 an−3 an−5 · · · 0 z j,1 = z j−2,i+1 − t jz j−1,i+1 t j =
z j−2,1
z j−1,1

stabilRouth ⇔ (∀ai|0 ≤ i ≤ n : ai > 0) ∧
(
∀z j,1 : z j,1 > 0

)
BIBO (Bounded Input Bounded Output)
∞∫
0
|h(t)| dt < ∞ ⇔ ∀s∞q : <(s∞q) < 0 ⇐ asymptotisch stabil

Betrachtung der Schleifenverstärkung H0 bei Einheitsrückführung (Q > R)
Nyquistkriterium
∀ω : H0(iω) , ±1 ∧ arg (1 ∓ H0(i∞)) − arg (1 ∓ H0(i0)) = nrπ + na

π

2 nr = #
(
s∞q|<(s∞q) > 0

)
na = #

(
s∞q|<(s∞q) = 0

)
Phasenrand
ΦR > 0 ΦR =

(
3
2 ±

1
2

)
π + arg (H0(iωc) |H0(iωc)| = 1

Amplitudenrand
kR > 1 kR = |H0(iω−2π)|−1 arg (H0(iω−2π)) −

(
1
2 ∓

1
2

)
π = −2π
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Gekoppelte Systeme

Reihenschaltung Parallelschaltung

Ah = Ah1 Ah2 φh = φh1 + φh2

ah = ah1 + ah2 vh = vh1 + vh2

A =

(
A1 0

B2 · C1 A2

)
B =

(
B1

B2 · D1

)
x =

(
x1
x2

)
A =

(
A1 0
0 A2

)
B =

(
B1
B2

)
x =

(
x1
x2

)
C =

(
D2 · C1 C2

)
D =

(
D2 · D1

)
C =

(
C1 C2

)
D = D1 + D2

h = h2 ? h1 H = H2 ·H1 h = h1 + h2 H = H1 + H2

Rückkopplung

H0 = H2 ·H1 Schleifenübertragungsfunktion

H = (1 ∓H1 ·H2)−1 ·H1

A=

A1 ± B1 · D2 · (1∓D1 · D2)−1 · C1 ±B1 · C2 + B1 · D2 · (1∓D1 · D2)−1 · D1 · C2

B2 · (1∓D1 · D2)−1 · C1 A2 ± B2 · (1∓D1 · D2)−1 · D1 · C2

 x =

 x1

x2


B=

B1 ± B1 · D2 · (1∓D1 · D2)−1 · D1

B2 · (1∓D1 · D2)−1 · D1

 C=

(
(1∓D1 · D2)−1 · C1 ± (1∓D1 · D2)−1 · D1 · C2

)
D=(1∓D1 · D2)−1 · D1

Bausteine

P Proportionalblock

y = Ksu hσ(t) = Ksσ(t) H(s) = Ks

PTn proportional im eingeschwungenen Zustand, n Zeitkonstanten
Q∑

q=1
Tq

dqy
dtq + y = Ksu H(s) =

Ks
Q∑

q=1
Tqsq+1

PT1 T = Zeitkonstante

T ẏ + y = Ksu hσ(t) = Ks

(
1 − exp

(
− t

T

))
σ(t)

PT2 d = Dämpfung

T 2ÿ + 2dT ẏ + y = Ksu

I Integralblock

TI ẏ = u hσ(t) = t
TI
σ(t) H(s) = 1

TI s

IT1 (PT1 + I)

TIT ÿ + TI ẏ = u hσ(t) =
(

t
TI
− T

TI

(
1 − exp

(
− t

T

)))
σ(t)

D Differentialblock

y = TDu̇ hσ(t) = TDδ(t) H(s) = sTD

DT1 (PT1 + D)

T ẏ + y = TDu̇

Tt Totzeitblock

y(t) = Ksu(t − Tt) hσ(t) = Ksσ(t − Tt) H(s) = Ks exp(−sTt)
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Filter

3 dB-Grenzfrequenz äquivalente Bandbreite Transitfrequenz

Ah(ωg) = 1
√

2
Ah(ω0) Ah(ω0)ωeq =

∞∫
−∞

Ah(ω)dω Ah(ωt) = 1

Tiefpaß

hTP(ωg)(t) =
ωg

π
si

(
ωg(t − t0)

)
hTP(ωg)(n) =

ωg

π
si

(
ωg(n − n0)

)
HTP(ωg)(ω) = Π2ωg (ω) exp(−iωt0) HTP(ωg)(ω) = Π2ωg (ω) exp(−iωn0T )

Bandpaß (Mittenfrequenz ωm =
(
ωg min + ωg max

)
/2, Bandbreite ωB = ωg max − ωg min)

hBP(ωB)(t) = 2hTP

(
ωB
2

)
(t) cos(ωmt) hBP(ωB)(n) = 2hTP

(
ωB
2

)
(n) cos(nωmT )

HBP(ωB)(ω) = HTP

(
ωB
2

)
(ω − ωm) + HTP

(
ωB
2

)
(ω + ωm) HBP(ωB)(ω) = HTP

(
ωB
2

)
(ω − ωm) + HTP

(
ωB
2

)
(ω + ωm)

Hochpaß

hHP(ωg)(t) = δ(t − t0) − ωg

π
si

(
ωg(t − t0)

)
hHP(ωB)(n) = hTP(ωB)(n) cos(nπ)

HHP(ωg)(ω) =
(
1 − Π2ωg (ω)

)
exp(−iωt0) HHP(ωB)(ω) = HTP(ωB)

(
ω ± πT

)
Bode-Diagramm

H = const H = iω/ω0 H = 1 + iω/ω0 H = 1
iω/ω0

H = 1
1+iω/ω0

Allgemeines Filter Tiefpaß Hochpaß Filterentwurf

H(s) =
H0

1+
N∑

n=1
cnS′n

cn ∈ R
+
0 S′ = S S′ = 1

S S = s
ωg

Bandpaß Bandsperre

S′ = 1
∆Ω

(
S + 1

S

)
S′ = ∆Ω

S+ 1
S

S = s
ω0

∆Ω =
ωg2−ωg1

ω0

Butterworth-Approximation

|H(ω)| = |H0 |√
1+ε2Ω2N

s∞n =
ωg
N√ε

exp
(
iπ2

(
1 + 2n−1

N

))
N ≥ log( λ

ε )
log

(
ωs
ωg

)
Tschebyscheff-Approximation

|H(ω)| = |H0 |√
1+ε2TN (Ω)2

TN(x) = 2xTn−1(x) − Tn−2(x)

T0(x) = 1 T1(x) = x
N ≥ arccos( λ

ε )
arccos

(
ωs
ωg

)
Cauer-Approximation

|H(ω)| = |H0 |√
1+ε2ΨN (Ω)2

Ψ (x) elliptische Jacobi-Funktion

Bessel-Approximation

H(s) = H0
BN (0)

BN (stphase)

BN(x) = (2n − 1) Bn−1(x) + Bn−2(x)

B0(x) = 1 B1(x) = x + 1


