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Elementarsignale

Signumfunktion
-1 firt<0

t
sgn(f) =40 firr=0;=20)-1=2 f O(r)dr -1

1 fiirt>0
F (sgn(®) = 5 L(sgn(n) = 3
Sprungfunktion
0 furr <0

t

o( =105 firr=0p=1sgn()+ 4= [d(r)dr= [8(-7)dr
—00 0

1 fiirt >0
F (o) = & +md(w)  L(o() =1
Rechteckfunktion
1 fir |1 < T/2
() =105 firl=7/2y=o(t+%)-o(t-
0 fir |f > T/2
F (TI7 (1) = Tsi (<)
Dreickfunktion
Ar()— {1—|t|/T fir | < 7
0 fir [f| > T
F (Ar(1) = Tsi (L)
Rampenfunktion
0 firr <0 .
() =AyT fir0<r<Ty=% [Tr(r-%
1 firt>7T o
=7 (t-5)+ o~ T)
F (rr() = Lsi (“’TT) exp (—i‘”TT) + 1d(w)
si-Funktion (Spaltfunktion)

si(wot) = _Si“ag‘;;)’)
F (si(wrt) = L0, (%)
Deltafunktion

_ oo firt=0 T 1 _do(®)
o) = {0 fiir 1 # 0} = lim (T1(0) = 5

= ﬁ f exp(iwt)dw = % k_z_] exp(ikQr)

F (Ot + 1)) = exp(iwty) L (O + tg)) = exp(stp)
u(t +to) = u() * 8(t + 19) = [ u(®)d(t + to — T)dr

Deltakamm

Sr(n = 3 8(t—1T)

T=—00

F (0r(1) = wrdy, (W)

ur(t) = u(H) * dr(t) = 3 ult - kT)

k=—00

00

=317 (0) * 7 (0) = rr(t+T)—r7(D)

— 20 -1=2 % 801

y=—00

-1 firn<O
1 firn>0

sgn(n) = {

0 firn<O ' o0
o= { om0 b+ § b= 5 -

=0<n+M—‘1)—0(n—%)

0 fir n| > (M—-1)/2

M) = {1 fiir ] < (M — 1)/2}

_ sin(MwT/2)
F (My(n)) = sin(@T/2)

1—|n|/M fir |n] < M

A =
u(n) {0 fiir o] > M

} = LTy (n) * Ty ()

0 firn <0 )
ry(n) = n/M fir0<n<M :%( 3 HM(V—%)—l)
1 firn > M veT®

si(won) = —Si‘:f)‘(‘)’;;;ﬂ
1 firn=0
0 = =11 =on)-on-1
(n) 0 fiirn 0} 1(n) =o(m) —o(n-1)
x+2nt/T

=L [ exp(iwnT)dw

X

F (d(n + ny)) = exp(iongT) Z(d(n+ ngy)) =2"

u(m + ng) = u(n) * 6(n + ny) = f u()d(m + ng — v)

y=—00

Su(m) = 3 d(n—vM)

y=—00

ZOum) = 3 7™M

y=—00
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Signaleigenschaften

Arithmetischer Mittelwert
15}

m(t1,1) = - [u(r)de

3]

Gleichrichtmittelwert

n
- [ lu(o)| de
n

my(t, 1) = =
Effektivwert

5]

mp(t, ) = = [ u()*de

5]
41

Energie

153
Wt ) = % [u(®?dt = Lru(t,12)(0)

n

Leistung

Pyt 1) = =Wt 12)

) —

Varianz

153
oAt )= A [ w®-m(t,10))* di
1

= ZP,(t1, 1) — m,(t, 1)*

Kreuzkorrelationsfunktion
153

Fun(t, 0)(0) = [ u@@v(t + 1)dr

1

F (ra(®) = Uw)V(w)

Signal-Verhéltnis

2
SR(u,v) = b = Za

2
Veﬂ

Hilberttransformation

e8]

H (u(®) = u@®) * 1 = [ “2dr

—00

ny
1
my(ny,np) = —=g 2, u(v)

v=n;

ny
1
my(ny, n2) = Pr——] 2 lu)|
v=n)
- 2
ma(ni,my) = == 3 u(v)
v=n)

ny
Wi, my) = 5 3 u()? = Zru(ni, ny)(0)
v=n

Pu(n1,n2) = —~—W,(n1,n,)

ny—ny+1

ny
1 2
oa(nm) = sy 3 (W(v)—my(ny,n2))

v=n|

= ZP,(n1,ny) — my(ny, ny)*

F(m,m)n) = 3 ut)v(n +v)

normiert

(1)

puv(t) = rm(o)

Signal-Abstand

SRap(u, v) = log; (%) [B] = 2log, (1\2:) [B]

H(H @) = ut) * 1 % 1 = —72u(r)

my, = my (=00, 00) = my, (7,7 +T)
my,| = my, (=00, 00) = my,, (1,7 +T)
Ueff =mp = muz(—oo, OO) = mu§(‘r,‘r + T)

Wu = Wu(_ooa OO) = Wur(T’ T+T)=%ruu(0)

Pu = Pu(_oov OO) = PuT(TaT+ T)

2

Oy

= 0l(—00,00) = 0% (1, 7+ T)

=ZP,—m’

ruv(t) = ruv(_oo’ 00)([) = Tupvr (T, T+ T)(t)

Leistungssignale

Ly = Tlgrgo(% fu(‘r)v(t + T)dT]
T
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Digitalisierung
Ideale Abtastung
W0 = u/0dr() = T TR =nT) e U'(W) = £UW) % 010 (@) = + 3 Ulw=kr)
n=—co P2

u@) = u* () * Thre (%) () = T uGiT)si(4@=nT)) o Uw) = UN)THrp (%) (@)

Signalausblendung (shape-top sampling, natural sampling) mit0 < « < 1

ua(1) = u(t) Moz (1) % 87(1) o= Uy(w) = =U(w) * aTsi(”;‘z'T)wTémT(a)) =a f sitkna)U(w — kwr)
k=—c0

u(t) = () * Thip (%) (1) o= U(w) = U(w)LHrp (%) (@)
Signalverbreiterung (flat-top sampling)

00

(1) = u* () * Tar(t) o Ugw) = asi(4eL) ¥ Ulw - kor)
k=—oo

Abtastrate Bandpal3signale

fr = 2f, fr= o mitn e NALES 1 < p < Lo

Quantisierungsrauschen ¢(f) (Quantisierungsstufenhohe 4, Bitanzahl m)

P, = %‘1'—2 = %22’2;3 SNR(u) = SR(u, q) = a2*" SNRgg(u) = 0,602m + log,,(@) [B]

Spezielle Systeme
Bezeichnung Definition/Eigenschaften bei Pol-/Nullstellen bei diskreten PN
Stabil W), < o0 R(Se0) < 0 |Zeo] < 1

h(t < 0) =0 _{o%dw«m R<OQ R<Q

Kausal h(t) = ho(@) + hu(t) o H() = Hy(w) + Hu(w) (reale Systeme immer)

hy(t) = hy(Dsgn(t) o Hy(w) = LH (H,(w))

Hip(w) = A(w) exp(-iwty)  ¢rp(w) = —wiy R(so) = -R(so) 0=0 | z= ZOTI 0=0

Linearphasig
(Stabil) h(to+t)=h(tg—1t) VvV h(tg+1)=—-h(tg — t) (reale Systeme nie) to=TR/2
. Zy = a R=
Hap(@) = Apexplio(@)  Aap(w) = Ao Riso) = ~R(s) R=Q | 0 =7 R=0
=] 2 | Ao = |2/ T Izo/l
AllpaB (Stabil) @l lao ol
21fi =
~ lao i 0ogq
br - HAP AaRr—r
Verzerrungsfrei yys(t) = au(t — ty) Hys(w) = Ag exp(—iwty)
(Linearphasig und
Allpaf3)

Hpin(w) = A(w) exp (1@min(w
Minimalphasig/ (@) = Alw) exp (imin()) R(Soie0) < 0 |Z0|oo| <1

AllpaBfrei (Kausal) | $min(w) = H (In(A(w)))

R R b ﬁ(Hw)
Nichtrekursiv 0=0 h(n) = % 2 bod(n—r) — H(z)= % bz =
r=0 r=0
Reinrekursiv R=0 h(n) — H(z) = b = Z_E 0 2

X agz71 [1(7-7cq)
0 g=1

g=!
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Systembeschreibung (Vierpol)
System l
1), U(s 1), Y(s
W, U0 || See L X
Vierpolparameter
Ue hyy h i, 1 - Zl =z
H-Parameter _ | 2y = L yio| _ L 1ZI  zi2 i .
la har o Ug yar o Y] -z 1 —p e
Ue Z Z I, H h _ uel H | Z | Y iu“
Z-Parameter = [ Z) = ﬁ H] 2| _ ﬁ Y22 Y12
Ug 21 2 lq —hy 1 Y21 Y
le Ue 1 -h z -z
Y-Parameter _ P e Y| = ﬁ 12 _ ﬁ 22 12
q Y2 oy Ug hyy [HI —221 2N

LTI-System (Linear Time Invariant)

Frequenzgang
H() = 5 = Ay(w) exp (ign(@)) = HS)ls=i = H@mexpiion)

Amplitudengang Déampfung=—Verstiarkung
Ap(w) = [H(w)l ap(w) = SRgg(U, Y) = -2log,, (|H(w)]) [B] = —v;(w)
Phasengang Phasenlaufzeit

_on(w)
w

pn(w) = arg (H(w)) = _wtphase(w) tphase(w) =
Systemantworten
ut) — YO =u@) *h(t) — Y()=UE)HEG) uln) —  yn)=un) xhn) — Y(z)=U)H(2)

Impulsantwort

8t —  h(t) =YD . H(s) = sHy(s) d(n) —  h(n) = ho(n) — ho(n—1) o H(z):(l—z‘l)H(,(z)

dr
Sprungantwort

o) = heD= [ AT o Ho)=5THE o) o hm= ¥ k) e Hy@)=(1-2")" H)

—00 y=—00

Exponentialsignale (unendlich ausgedehnt bzw. im eingeschwungenen Zustand)

u(t) =upexpiwir) —  y@) =u@®H(w) um) =ugexp(iwnT) —  yn) =um)H(w)
= Hw)=2=2 = H(w) = 22

Pol-Nullstellen-Darstellung (Laplace-/Z-Transformation)

DGL
Q0 R 9 R
d &
Y a4, = 3 b0 Y agy(n—-q) = 3, byu(n—r)
q=0 r=0 q=0 r=0
Ubertragungsfunktion
Z(s) § b ﬁ( ) f} b ﬁ( )
$)=% bs" S—Sor vz " 7—Z0r
_ Y _ =0 _ bg =1 _ Yo _ = — ,0-Rbo r=1
H() = g = H(z) = 55 = 3 =207 R0

Q - ag 2
N(s)=2. ays! [T(s=Scor) Y aqzd [1(z—2er)
4=0 g=1 4=0 g=1
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Zustandsmodell
x(f) = f(x(r),u(r),t) x Zustandsvektor  u Eingangsgrofien
y() = g(x(@®),u(®),r) 'y AusgangsgroBen

Linearisierung im Arbeitspunkt AP

X ~ £ (Xap, uap) + A - (X — Xap) + B - (0 —upp) A = 2 (Xap, uap) B = 2 (xap, upp)
y~ g(Xap,uap) + C- (x—xpp) + D-(u—-upp) C= ;Tg’l‘ (xap,upp) D= ;Tg’l' (Xap, Uap)
h(r) = C - ¥(¢) - B + D&(¢) o=Hs)=C-(s1-A)"'-B+D Impulsantwort

t
hy(t)= [C-¥(1)-Bdr+D=C-A"'"¥(1)-B-C-A""-B+Do(t) o~H,(s)=5s"'C-(s1-A)"-B+D Sprungantwort
0

t
x(1) = Y(1) - x(0) + f Y(t—-71)-B-u(r)dr W(r) = exp(Ar) Bewegungsgleichung
0
t
y(@®) = C-¥Y() -x(0) + fC -W(t—-1)-B-u(r)dr+D-ur) Ausgangsgleichung
0
K,=-C-A"'"-B+D statische Verstirkung
Regelungsnormalform (R < Q)
0 1 0 0
y .
_ag | - | | (b _bow ’ﬁ_%) _bo _ by
e 40-1, A= 0 0 1 B= C_(GQ “ @ g D= K=u
o _ 4, o 1
llQ IZQ RQ
Beobachtungsnormalform (R < Q)
0 ce 0 —aO/aQ 2
b -b,
L0 —afa o=t/ )
A= . . B= C:(O 0 l) D:i Kx:i—g
. : B )
0 1 —HQ_l/(lQ bQ,l/aQ bnaQ,l/aQ
Kanonische Normalform (4, Eigenwerte, A, Eigenvektoren von A)
X =V'.x A=V'.A.V=dagl) B=V'B C=Cv D=D V=(b - AQ)
Eigenbewegung Eigenlosung
exp(d10)x;
Qo
¥ () = diag (exp(/lqt)) Y (1)x'(0) = Y()x(0)= El)wq exp(A,0)x,(0) X,(t)=h, exp(1,?)
exp(/lqt)x; -
Stabilitat
Ljapunow
stabil japunow © VYe>0:36>0:V[xO)<5: Vr>0: [x@ll<e & VYi,: R,) <0
asymptotisch stabil; ;o000 € Stabili japunow A tlirn (Ix@®I) =0 = VY, R <0
Hurwitz (asymptotisch stabil)
n a a a as das
detA-AD)=Yal=0 Dy=a; Dy=| " Dy=|ay, a as
i=0 ap @ 0
a as
stabilguwiz. © Mal0<i<n: a>0)AND|0<i<n: D;>0)
Routh (asymptotisch stabil)
zeilel = @, ayy aps -+ O zeilej = 7,z
zeile2 = g,y a,3 aps -+ 0 Zjl = Zjmgisl ~HZjmrin = :ji

stabilgoun, & (Va0 <i<n: a;>0) A(Yz : 21 >0)
BIBO (Bounded Input Bounded Output)

flh(t)ldt <0 & Vs : R(Seq) <0 &  asymptotisch stabil
0

Betrachtung der Schleifenverstirkung H bei Einheitsriickfiihrung (Q > R)

Nyquistkriterium

Yo : Hy(iw) # £1 A arg (1 F Hy(ico)) — arg (1 ¥ Hy(i0)) = n,7 + n, 5 n, = #(sooql‘R(swq) > 0)
Phasenrand

>0 by = (g + %)n +arg (Ho(lwe)  |Ho(iw,)| = 1

Amplitudenrand

k> 1 ke = Hollwonl ! arg (Holiw-2) = (3 7 §)m = ~21

n, = #(swqm(smq) =0)
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Gekoppelte Systeme
Reihenschaltung Parallelschaltung
u=u : Y1:uz. Y=Y
2
Ap = Ap Ay, én = Pn, + dn,
an = ap, + ap, Vp = Vp, +Vp,

_ Al 0 _ Bl X1 _ Al 0 _ Bl .S
A_(Bz'cl A2) B_(BQ'DI) X_(Xz) A_( 0 A2 B= B2 X= Xo
CZ(DQ'C] Cz) DZ(DQ'D]) C:(Cl Cz) D:D1+D2
h=h, xh H=H, -H, h=h; +h, H=H, +H,
Riickkopplung
u
g H, =H, - H, Schleifeniibertragungsfunktion

H=(17FH, -H,)"' H,

A A B, -D,-(1¥D; -D,) ' -C; 2B;-C,+B;-D,- (15D, -D,)™'-D; - C,
= X
B2 . (1¢D1 . D2)71 . C] A2 + B2 . (1¢D| . D2)71 . D] . C2

X
X2
C=((1$D1 ‘D)~ C; £(1FD;-Dy) "Dy ~C2) D=(1¥D; - D)™ - D,

B B, +B,-D,- (15D, -D,)! - D,
B, - (1FD; - D,)' - D,

Bausteine

P Proportionalblock
y = Ksu ho(t) = K;0(1) H(s) = K

PT, proportional im eingeschwungenen Zustand, n Zeitkonstanten

e 0

0
leq‘”Hy:Ksu H(s) = oK
pe

2 Tysi+l1
g=1
. u Yy

PT T = Zeitkonstant —=9

T = Zeitonsane A=
Ty+y=Ku ho(t) = K, (1 = exp(—+)) o(r) K
PT, d=Dimpfung " y " v
T?5 +2dTy +y = Ksu ]i : :
I Integralblock
Ty=u ho(t) = £;0(1) H(s) = 75
IT;y (PT;+1]) " » " ¥

. e L
T/\T5 + Ty = u ho(t) = (£ - £ (1 - exp(=£))) o() ]4 ! [
D Differentialblock " L y w rd]y
y=Tpi ho(t) = Tpd(?) H(s) = sTp ds
DT; (PT,+D) " » " Ty

. HLH —PT > &
Ty+y=Tpi de
T Totzeitblock
LL[L,

(1) = Kau(t —T)) ho(t) = Kso(t = T,)  H(s) = Kyexp(—sT))
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Filter
3 dB-Grenzfrequenz  dquivalente Bandbreite Transitfrequenz
Anwg) = AWy  Ap(wolweg = [ Anw)dw  Ay(w) = 1
Tiefpall
hrp(wg)(1) = Ssi (wy(t — 1)) hrp(wg)(n) = “%si (wg(n - no))
Hrp(wg)(w) = Iy, (w) exp(—iwly) Hrp(wg)(w) = Iy, (w) exp(—iwneT)
BandpaBl (Mittenfrequenz w,, = (a)g min + Wy max) /2, Bandbreite wp = Wgmax — Wgmin)
hep(wp)(1) = 2hre (%) (1) cos(wpt) hep(wp)(n) = 2hrp () (1) cos(nw, T)
Hgp(wp)(w) = Hrp (%) (w = wp) + Hrp (%) (w+wn)  Hpp(wp)(w) = Hrp (%) (w = wp) + Hrp (%) (W + wn)
Hochpaf}
hip(w)() = (t — 10) — si (wy(t — 10)) hip(wp)(n) = hrp(wp)(n) cos(n)
Hip(w)(@) = (1 = Ty, (@) exp(—iwio) Hup(wp)(w) = Hrp(wp) (0 + F)
Bode-Diagramm
H = const H = iw/wy H=1+iw/wy = oion H= e
A,Z(“’;’)/dB A (w)/dB A (w)/dB A4 (w)/dB A, (w)/dB
607 eho s0] 60 60
207 20 207 20 20
| 001 1 100 (D/O)g 001 /1 100 o 001 1 100 /® 001 1\ 100 O/®, 001 1\ 100 /o,
-20 20 & 20" 20 e -20
-60] -60 .60 -60 -60
o, /n o/n o,/n ¢,/n ¢,/n
Va Y = A V2 4+ Y2
Va Va7 YVa Va7 Ya
N
001 1 100 WO, 001 1 100 ®/®, 001 1 100  o/®, 001 1 100 /O, 001 \1 100 /o,
i -V i Vi -V ) Vi
Vo enl 23 -t Vs
Allgemeines Filter Tiefpal3 Hochpaf} Filterentwurf
H(w)/H
H(s)= —— ¢, eRy S’ =S s=1 S=2 Ao
1+Y ¢, 8" ¢ !
n=1 1 2
BandpaB Bandsperre te
r_ 1 1 /_ AQ _ _ We—u
S—E(S'l'g) S—E S_wig AQ = szoﬁ’l 1
2
Butterworth-Approximation 1A »w
w w
_ __IHy| _ W . 2n-1 log(£) ¢
|H((1))| = Viieon Scon = /\,—k exp (15 (1 + T)) N > 10g<ﬂ)
! g
Tschebyscheft-Approximation
\H(w)| = \Hol Tyn(x) = 2xTy1(x) = Tp2(x) N s eeos(d)

V1+ETy(Q)2

Cauer-Approximation

Tyx)=1  Ti(x)=x

|Hol
Vi+e ¥y (Q)2

Bessel-Approximation

|H(w)| =

_ By(0)
H(s) = Hogio 5

By(x) =1 Bi(x)=x+1

¥(x) elliptische Jacobi-Funktion

By(x) = (2n — 1) By_1(x) + By2(x)




